Search results for "gene network"

showing 9 items of 9 documents

Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses.

2014

There is epidemiological evidence that patients with certain Central Nervous System (CNS) disorders have a lower than expected probability of developing some types of Cancer. We tested here the hypothesis that this inverse comorbidity is driven by molecular processes common to CNS disorders and Cancers, and that are deregulated in opposite directions. We conducted transcriptomic meta-analyses of three CNS disorders (Alzheimer's disease, Parkinson's disease and Schizophrenia) and three Cancer types (Lung, Prostate, Colorectal) previously described with inverse comorbidities. A significant overlap was observed between the genes upregulated in CNS disorders and downregulated in Cancers, as wel…

Central Nervous SystemCancer ResearchGene ExpressionDiseaseComorbidityBioinformaticsProstate cancer0302 clinical medicineNeoplasmsGenetics (clinical)0303 health sciencesWnt signaling pathwayParkinson DiseaseAlzheimer's diseasePeptidylprolyl Isomerase[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]3. Good health[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Alzheimer's diseaseResearch ArticleSignal Transductionlcsh:QH426-470[SDV.CAN]Life Sciences [q-bio]/CancerProtein degradationBiology03 medical and health sciencesAlzheimer Disease[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]medicineGeneticsCancer GeneticsHumansGene NetworksMolecular BiologyBiologyEcology Evolution Behavior and Systematics030304 developmental biologyPeptidylprolyl isomeraseGene Expression ProfilingCancerComputational Biologymedicine.diseaseColorectal cancerComorbidityMalariaNIMA-Interacting Peptidylprolyl IsomeraseMeta-analysislcsh:GeneticsGene Expression RegulationImmunologySchizophrenia[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie030217 neurology & neurosurgery
researchProduct

Transcriptome profiling of citrus fruit response to huanglongbing disease.

2010

Huanglongbing (HLB) or "citrus greening" is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB- affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of phot…

CitrusProtein FoldingGene Identification and Analysislcsh:MedicinePlant ScienceTranscriptomechemistry.chemical_compoundRNA interferencePlant Growth RegulatorsGene Expression Regulation PlantModelsGene expressionPlant Genomics2.1 Biological and endogenous factorsPhotosynthesisAetiologylcsh:SciencePlant Growth and DevelopmentPlant PestsMultidisciplinaryProtein StabilityJasmonic acidfood and beveragesHigh-Throughput Nucleotide SequencingAgriculturePlantsCell biologyCarbohydrate MetabolismResearch ArticleSignal TransductionGeneral Science & TechnologyPlant PathogensProtein degradationBiologyModels BiologicalFruitsMolecular GeneticsRhizobiaceaeSettore AGR/07 - Genetica AgrariaHeat shock proteinBotanyGeneticsGene RegulationGene NetworksBiologyTranscription factorPlant DiseasesAnalysis of VarianceGene Expression Profilinglcsh:RCitrus HLB next-generation sequencing candidatus liberibacterComputational BiologyPlantPlant PathologyBiologicalWRKY protein domainGene expression profilingchemistryGene Expression Regulationlcsh:QGene expressionGene FunctionTranscriptomeTranscription Factors
researchProduct

Hub-Centered Gene Network Reconstruction Using Automatic Relevance Determination

2012

Network inference deals with the reconstruction of biological networks from experimental data. A variety of different reverse engineering techniques are available; they differ in the underlying assumptions and mathematical models used. One common problem for all approaches stems from the complexity of the task, due to the combinatorial explosion of different network topologies for increasing network size. To handle this problem, constraints are frequently used, for example on the node degree, number of edges, or constraints on regulation functions between network components. We propose to exploit topological considerations in the inference of gene regulatory networks. Such systems are often…

Dynamic network analysisTranscription GeneticMicroarraysSciencePosterior probabilityGene regulatory networkBiologycomputer.software_genreBioinformaticsNetwork topology03 medical and health sciences0302 clinical medicineYeastsGeneticsComputer SimulationGene Regulatory NetworksGene NetworksBiology030304 developmental biologyRegulatory NetworksHyperparameter0303 health sciencesMultidisciplinaryModels GeneticSystems BiologyQuantitative Biology::Molecular NetworksCell CycleQRComputational BiologyBayesian networkGene Expression RegulationROC CurveMedicineData miningcomputerAlgorithms030217 neurology & neurosurgeryCombinatorial explosionBiological networkResearch ArticlePLoS ONE
researchProduct

Defining the genomic signature of totipotency and pluripotency during early human development.

2013

The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation netw…

EmbryologyBlastomeresMicroarraysCellular differentiationGene ExpressionCell Fate DeterminationMolecular Cell BiologyGene Regulatory NetworksInduced pluripotent stem cellreproductive and urinary physiologyGeneticsMultidisciplinarySystems BiologyStem CellsQTotipotentRGenomic signatureCell DifferentiationGenomicsCell biologyFunctional GenomicsBlastocyst Inner Cell MassBlastocyst Inner Cell Massembryonic structuresMedicineResearch ArticlePluripotent Stem CellsSystems biologyCell PotencyScienceEmbryonic DevelopmentBiologyMolecular GeneticsGeneticsHumansGene NetworksBiologyEmbryonic Stem CellsGenome HumanGene Expression ProfilingBio-OntologiesComputational BiologyMolecular Sequence AnnotationComparative GenomicsMolecular DevelopmentEmbryonic stem cellSignalingSignaling NetworksGene expression profilingGenome Expression AnalysisTotipotent Stem CellsDevelopmental BiologyPLoS ONE
researchProduct

Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.

2011

One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs) have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns—independent component analysis—to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify maj…

MaleCancer ResearchGene ExpressionGenome-wide association studyGenetic NetworksCoronary Artery Disease[SDV.GEN] Life Sciences [q-bio]/GeneticsCardiovascularMESH: MonocytesMonocytesMESH: HypertensionTranscriptomes0302 clinical medicineMESH: ProteinsMESH: Genetic VariationGenetics (clinical)GeneticsMESH: Aged0303 health scienceseducation.field_of_studyMESH: Middle AgedMESH: Polymorphism Single NucleotideIntracellular Signaling Peptides and ProteinsMESH: Genetic Predisposition to DiseaseGenomicsMESH: Transcription FactorsMiddle AgedMESH: Ribosomal ProteinsMESH: Gene Expression Regulation3. Good healthHypertensionMedicineFemaleMESH: Diabetes Mellitus Type 1Research ArticleAdultRibosomal Proteinslcsh:QH426-470PopulationQuantitative Trait LociLocus (genetics)Single-nucleotide polymorphismBiologyQuantitative trait locusPolymorphism Single Nucleotide03 medical and health sciencesMESH: Gene Expression ProfilingGenome Analysis ToolsGeneticsGenome-Wide Association StudiesHumansGenetic Predisposition to DiseaseGene NetworkseducationMolecular BiologyBiologyEcology Evolution Behavior and SystematicsMESH: Genome Human030304 developmental biologyGenetic associationAdaptor Proteins Signal TransducingAged[SDV.GEN]Life Sciences [q-bio]/GeneticsMESH: HumansGenome HumanGene Expression ProfilingGenetic VariationProteinsHuman GeneticsMESH: AdultAtherosclerosisMESH: MaleMESH: Quantitative Trait LociGene expression profilingCeliac Diseaselcsh:GeneticsDiabetes Mellitus Type 1Gene Expression RegulationExpression quantitative trait lociGenetics of DiseaseMESH: Genome-Wide Association StudyMESH: MuramidaseMuramidaseGenome Expression AnalysisMESH: Female030217 neurology & neurosurgeryMESH: Celiac DiseaseGenome-Wide Association StudyTranscription Factors
researchProduct

Stage-specific germ-cell marker genes are expressed in all mouse pluripotent cell types and emerge early during induced pluripotency.

2011

Embryonic stem cells (ESCs) generated from the in-vitro culture of blastocyst stage embryos are known as equivalent to blastocyst inner cell mass (ICM) in-vivo. Though several reports have shown the expression of germ cell/pre-meiotic (GC/PrM) markers in ESCs, their functional relevance for the pluripotency and germ line commitment are largely unknown. In the present study, we used mouse as a model system and systematically analyzed the RNA and protein expression of GC/PrM markers in ESCs and found them to be comparable to the expression of cultured pluripotent cells originated from the germ line. Further, siRNA knockdown experiments have demonstrated the parallel maintenance and independen…

MaleMouselcsh:MedicineGene ExpressionEmbryoid bodyCell Fate DeterminationMice0302 clinical medicineMolecular Cell BiologyNuclear Reprogramminglcsh:ScienceInduced pluripotent stem cellPromoter Regions Genetic0303 health sciencesMultidisciplinaryStem CellsGene Expression Regulation DevelopmentalAnimal ModelsCellular ReprogrammingChromatinChromatinMeiosismedicine.anatomical_structureBlastocyst Inner Cell Massembryonic structuresEpigeneticsBiological MarkersFemaleGerm cellResearch ArticleBivalent chromatinInduced Pluripotent Stem CellsBiologyCell Line03 medical and health sciencesModel OrganismsGeneticsmedicineAnimalsRNA MessengerGene NetworksEmbryonic stem cells (ESCs); germ layer cell typesBiology030304 developmental biologylcsh:RMolecular DevelopmentMolecular biologyEmbryonic stem cellGerm Cellslcsh:QGene FunctionChromatin immunoprecipitationBiomarkers030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

A Regulatory Mechanism Involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the Control of Cell Proliferation

2011

Abstract TBP-1 /Tat-Binding Protein 1 (also named Rpt-5, S6a or PSMC3) is a multifunctional protein, originally identified as a regulator of HIV-1-Tat mediated transcription. It is an AAA-ATPase component of the 19S regulative subunit of the proteasome and, as other members of this protein family, fulfils different cellular functions including proteolysis and transcriptional regulation. We and others reported that over expression of TBP-1 diminishes cell proliferation in different cellular contexts with mechanisms yet to be defined. Accordingly, we demonstrated that TBP-1 binds to and stabilizes the p14ARF oncosuppressor increasing its anti-oncogenic functions. However, TBP-1 restrains cell…

TBP-1/Tat-Binding Protein 1lcsh:Medicinemacromolecular substancesBiologymTORC2Cell GrowthTBP-1/Tat-Binding Protein 1; cell proliferationp14arfMolecular Cell BiologyGeneticsCancer GeneticsTranscriptional regulationGene Networkslcsh:ScienceBiologyProtein kinase BPI3K/AKT/mTOR pathwayMultidisciplinaryCell growthAKTBinding proteinlcsh:RMolecular biologySignaling CascadesCell biologyTBP-1enzymes and coenzymes (carbohydrates)cell proliferationbiology.proteinMdm2lcsh:QCell DivisionResearch ArticleSignal TransductionPLoS ONE
researchProduct

Serine- and Threonine/Valine-Dependent Activation of PDK and Tor Orthologs Converge on Sch9 to Promote Aging

2014

Dietary restriction extends longevity in organisms ranging from bacteria to mice and protects primates from a variety of diseases, but the contribution of each dietary component to aging is poorly understood. Here we demonstrate that glucose and specific amino acids promote stress sensitization and aging through the differential activation of the Ras/cAMP/PKA, PKH1/2 and Tor/S6K pathways. Whereas glucose sensitized cells through a Ras-dependent mechanism, threonine and valine promoted cellular sensitization and aging primarily by activating the Tor/S6K pathway and serine promoted sensitization via PDK1 orthologs Pkh1/2. Serine, threonine and valine activated a signaling network in which Sch…

ThreonineCancer ResearchAgingSerineMice0302 clinical medicineSettore BIO/13 - Biologia ApplicataGene Expression Regulation FungalMolecular Cell BiologySerineSignaling in Cellular ProcessesThreonineGenetics (clinical)Cellular Stress Responses0303 health sciencesageing longevity Sch9 Tor Pkhs nutrients amino acidssurvival stress resistanceMechanisms of Signal TransductionValineCell biologyBiochemistryPhosphorylationSignal transductionResearch ArticleSignal TransductionSaccharomyces cerevisiae Proteinslcsh:QH426-470Adenylyl Cyclase Signaling PathwayLongevityP70-S6 Kinase 1Ras SignalingSaccharomyces cerevisiaeBiologyMicrobiologySignaling Pathways3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesModel OrganismsStress PhysiologicalGeneticsAnimalsGene NetworksProtein kinase AMolecular BiologyTranscription factorBiologyEcology Evolution Behavior and Systematics030304 developmental biologySerine/threonine-specific protein kinase[SDV.GEN]Life Sciences [q-bio]/GeneticsCyclic AMP-Dependent Protein Kinaseslcsh:GeneticsGlucoseFoodTor SignalingProtein Kinases030217 neurology & neurosurgeryTranscription Factors
researchProduct

The role of sulfur nutrition in the pea response to drought

2016

International audience

[SDE] Environmental Sciencessulfur nutritionwater stressprotein networkremobilizationsystem biologypea[SDE]Environmental Sciencesgene networkseed fillingComputingMilieux_MISCELLANEOUS
researchProduct